Corticopontine output from visual cortex promotes conditioned visuomotor behavior

Wednesday, October 3, 2018 - 12:00pm to 1:00pm
Greene Science Center, 9th Floor, 3227 Broadway, New York
Cortical circuits in the early visual stream, including primary visual cortex (V1), are necessary for extraction of information from external sensory inputs. These circuits comprise a variety of projection neurons that transmit signals to downstream areas, including cortical and subcortical structures involved in the generation of behavior. A key unanswered question is whether different neuronal populations in V1 encode distinct sensory representations that are "customized" for specific behavioral functions. Here, we combine 2-photon calcium imaging and optogenetic manipulation to demonstrate that a subset of layer 5 neurons that project to the brainstem selectively encode behaviorally-relevant information in a visually-guided classical conditioning task. Activity in corticopontine cells, but not closely intermingled corticostriatal cells, reliably predicts trial-to-trial behavior, and their suppression impairs performance. Our findings reveal functional heterogeneity in microcircuits of the early visual system and indicate the existence of segregated pathways in V1 for the coordination of behavior.
Michael J. Higley, MD, PhD
Home Institution: 
Yale University
Event Types: 
Neurobiology Seminars