Neurobiology Seminars

Dr. John Maunsell

What is attention? Re-examining the neuronal correlates of visual attention

April 26, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

Neuronal activity in cerebral cortex shows many attention-related changes that might contribute to improved behavioral performance: neurons have stronger responses to attended stimuli and effectively mask unattended stimuli within their receptive field; nearby neurons have activity that is less correlated; and the gamma power in extracellular potentials increases. About ten years ago, it became widely recognized that attention-related changes in neuronal responses are closely linked to a response-integration mechanism known as normalization. However, the relationship between attention and normalization in determining neuronal responses has not been clear. We have examined this relationship by recording responses from individual neurons in visual cortex of trained, behaving rhesus monkeys. We have taken advantage of different stimulus configurations that produce, or do not produce, normalization. The only neuronal correlate of attention that survives the removal of normalization is a modest increase in the strength of neuronal responses. The masking of unattended stimuli, reductions of correlated activity and increase of gamma power all depend having robust normalization. With robust normalization, those same phenomena can be seen when attention is removed from the picture and replaced by simple changes in stimulus strength. Overall, these results suggest that the immediate effect of attention is a modest modulation of sensory responses, and that the more striking signatures that have been previously attributed to attention are better viewed as signatures of normalization mechanisms that lie downstream.

Dr. Spencer Smith

Subcellular-resolution mesoscale imaging of visual cortical areas acting in concert

May 3, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

Neural circuitry represents sensory input with patterns of activity within populations of individual neurons. These representations are transformed across brain areas into representations that drive adaptive behavior. The circuitry across which transformations occur often extend over many millimeters: the mesoscale level or organization. Imaging at the mesoscale with micron resolution, deep in brain tissue that badly scatters light, with subsecond time resolution is a challenging optical problem. Here, we used new multiphoton imaging technology to measure representations across multiple visual cortical areas simultaneously in mice. By measuring shared variability for pairs of neurons within or across cortical areas, we obtained measurements of correlational structure, which can constrain models of circuit connectivity and mechanisms for transforming neural representations. In the course of this work, we also uncovered new principles for the organization of spatiotemporal and orientation tuning among visual cortex neurons. Together, these findings are illuminating how visual stimuli are represented in primary and higher visual areas in mice, and how these areas can be connected to each other.

Dr. Yuh Nung Jan

Mechano-sensitive channels in sensory physiology and neural regeneration

May 10, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

Among our senses, mechanical-sensing is the least well understood in part due to the difficulties in identifying and studying mechanical-sensitive channels that mediate the fist step of mechano-sensing. A group of Drosophila sensory neurons known as dendritic arborization (da) neurons have been used extensively for studying dendrite morphogenesis. It turns out that all da neurons are mechanical-sensitve and they are well suited for studying mechanical-sensitive channels such as Piezo, NompC and TMC. I will discuss our recent progress in this research area. There is also increasing evidence that mechano-sensitive channels play significant roles in several developmental processes. I will talk about their roles in axon/dendrite regeneration.

Katie Shakman

Cross compartmental modulation and plasticity in the Drosophila mushroom body

May 14, 2018 1:00 pm - 2:00 pm

Jerome L. Greene Science Center, Lecture Hall (L9-065), 3227 Broadway, New York NY

Thesis Defense Seminar

Dr. Karen Zito

CANCELED

May 17, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

This seminar has been canceled.

Graduate Student Research in Progress Talks

Presenter: Yossef Goffer

May 21, 2018 5:00 pm - 6:00 pm

Jerome L. Greene Science Center - JLG-L7-119, 3227 Broadway New York NY

Dr. Bob Datta

Extracting Meaning from the Olfactory World

May 24, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

The Datta lab studies how information from the outside world is detected, encoded in the brain, and transformed into meaningful behavioral outputs. We address this problem by characterizing the olfactory system, the sensory modality used by most animals to interact with their environment. Here, we describe a novel molecular and circuit mechanism that underlies odor perception, one that may be specialized for the detecting and processing of odors with innate meaning. We also describe recent experiments using a combination of volumetric population imaging in awake mice and behavioral analysis to explore odor codes in piriform cortex, the main cortical center devoted to olfaction in the mammalian brain; these experiments identify an invariant representation for odor space in cortex, thereby suggesting mechanisms through which the olfactory system can link chemically-related odors to similar behaviors and perceptual qualities both within and across individuals.

Dr. Tali Kimchi

TBA

May 31, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

Dr. Cagla Eroglu

TBA

June 7, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium

Dr. Myriam Heiman

TBA

June 14, 2018 12:00 pm - 1:00 pm

Neurological Institute Alumni Auditorium