State-dependent cortical circuits

Tuesday, October 2, 2018 - 4:00pm to 5:00pm
Greene Science Center, 9th Floor, 3227 Broadway, New York
Cortical circuit function is highly flexible, adapting rapidly to changes in environmental context and behavioral demand. Indeed, although the physical components of local circuits remain relatively constant, the precise population of neurons participating in ongoing patterns of activity can vary tremendously from moment to moment. GABAergic interneurons are key mediators of this flexible cortical circuit function. We find that different populations of interneurons are differentially regulated by behavioral states such as arousal and quiescence, contributing to state-dependent changes in visual processing and perceptual performance. We find that inhibitory regulation of GABAergic populations is a critical element of circuit function. In turn, loss or dysregulation of key inhibitory interneurons disrupts the flexible function of cortical circuits and impairs both cortical development and sensory processing in the mature brain. Our recent findings highlight unanticipated roles for sparse but powerful inhibitory populations, such as the VIP cells, and uncover the impact of inhibitory-to-inhibitory interactions in the cortex.
Name: 
Jessica A. Cardin, PhD
Home Institution: 
Yale University
Event Types: 
Neurobiology Seminars