Larry Abbott, PhD

Larry Abbott, PhD

Research Interest

Computational and Mathematical Analysis of Neural Networks

Larry Abbott's research involves the computational modeling and mathematical analysis of neural networks. Analytic techniques and computer simulation are used to study how neurons interact to produce functioning neural circuits, and how large populations of neurons represent, store, and process information. Areas of particular interest include implications of synaptic plasticity, connectome guided modeling of olfaction, vision and navigation in flies and predictive coding in electric fish, and the dynamics of internally generated activity and signal propagation in large neural networks.

Most neural activity is generated internally but nervous systems are nevertheless highly sensitive to external influences such as sensory stimuli. My group and I study how stimulus driven and internally generative activity interact and combine to produce functionally relevant responses. We also model how ongoing activity can be harnessed and controlled to produce useful outputs. Connectomics, combined with imagining and physiology, has opened up new possibilities for building highly constrained models. We are making use of this to obtain new insights into how neural circuits function.

PhD, Physics, Brandeis University

Professor of Physics, Brandeis University

Director, Center for Complex Systems, Brandeis University

Zalman Abraham Kekst Professor of Neuroscience, Brandeis University

  • Computation and Theory 
  • Neurobiology of Learning and Memory 
  • Plenary Lecture, Society for Neuroscience Meeting

  • Lamport Lecture, University of Washington

  • Teuber Lecture, McGovern Center, MIT

  • Keynote Lecture, Visual Sciences Society Annual Meeting

  • NIMH Director’s Innovation Speakers Seminar

  • Robert Hofstadter Memorial Lecture, Stanford University

  • Ruth K. Broad Foundation Lecture, Duke University

  • Swartz Foundation Mind/Brain Lecture

  • Hamilton Lecturer, Princeton University

  • Eminent Neuroscientist Guest Speaker, George Mason University

  • Flagship Seminar, Riken Brain Science Institute

  • Director’s Seminar Series, Janelia Farm

  • Boeing Distinguished Lecture, University of Washington

  • Albert and Ellen Grass Lecturer, Society for Neuroscience Meeting

  • Max Birnstiel Lecture, Institute of Molecular Pathology, Vienna

MOS random access integrated circuit memory (1970)

  • Member, Kavli Institute for Brain Science
  • Member of the Motor Neuron Center, Columbia University
  • Senior Fellow, HHMI Janelia Farm Research Campus
  • American Academy of Arts and Sciences
  • Fellow, American Association for the Advancement of Science
  • Steering Committee, Safra Center for Brain Sciences, Hebrew University
  • Scientific Advisory Panel, Gatsby Unit, UCL
  • Advisory Council for Physics Department, Princeton University
  • Scholars Selection Committee, McKnight Foundation
  • Mindscope Advisory Council, Allen Institute for Brain Science
  • Scientific Advisory Board, Champalimaud Neuroscience Program
  • Brain and Cognitive Sciences Visiting Committee, MIT
  • Scientific and Academic Advisory Committee, Weizmann Institute
  • Executive Committee, Simons Collaboration on the Global Brain
  • 2004  NIH Director’s Pioneer Award
  • 2010  Swartz Prize for Theoretical and Computational Neuroscience
  • 2013  First Annual Prize in Mathematical Neuroscience
  • 2013  Irving Institute Mentor of the Year Award
  • Stern M, Sompolinsky H, Abbott LF. (2014). Dynamics of random neural networks with bistable units. Phys Rev E Stat Nonlin Soft Matter Phys. 90:062710.
  • Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. Elife. 3:e04577.
  • Le Masson G, Przedborski S, Abbott LF. (2014). A computational model of motor neuron degeneration. Neuron. 83:975-988. Erratum in: Neuron. 2014;83:990.
  • Wayne G, Abbott LF. (2014). Hierarchical control using networks trained with higher-level forward models. Neural Comput. 26:2163-2193.
  • Fink, A.J.P., Azim, E., Croce, K.R., Huang, Z.J., Abbott, L.F. and Jessell, T.M. (2014) Presynaptic Inhibition of Spinal Sensory Feedback Ensures Smooth Forelimb Movement. Nature. 509:43-48.
  • Kennedy, A., Wayne, G., Kaifosh, P., Alvina, K., Abbott, L.F. and Sawtell, N.B. (2014)  A Temporal Basis for Predicting the Sensory Consequences of Motor Commands in an Electric Fish.  Nature Neurosci. 17:416-424.Kato, S., Xu, Y., Cho, C., Abbott, L.F. and Bargmann, C. (2014) Temporal Responses of C. Elegans Chemosensory Neurons are Matched to Behavior. Neuron 81:616-628.
  • Schaffer, E.S., Ostojic, S. and Abbott L.F. (2013) A Complex-Valued Firing-Rate Model that Approximates the Dynamics of Spiking Networks. PLoS Comput. Biol. 9:e1003301.
  • Caron, S.J.C, Ruta, V., Abbott, L.F. and Axel, R. (2013) Random Convergence  of Afferent Olfactory Inputs in the Drosophila Mushroom Body. Nature 497:113-117.
  • Babadi, B. and Abbott, L.F. (2013) Pairwise Analysis Can Account for Network Structures Arising from Spike-Timing Dependent Plasticity. PLoS Comput. Biol. 9:e1002906.
  • Monaco, J.D. and Abbott, L.F. (2011) Modular Realignment of Entorhinal Grid Cell Activity as a Basis for Hippocampal Remapping. J. Neurosci. 31:9414-9425.
  • Rajan, K., Abbott, L.F. and Sompolinsky, H. (2010) Stimulus-Dependent Suppression of Chaos in Recurrent Neural Networks. Phys. Rev. E 82:011903.
  • Luo, S., Axel, R. and Abbott, L.F. (2010) Generating Sparse and Selective Third-Order Responses in the Olfactory System of the Fly. Proc. Natl. Acad. Sci. USA 107:10713-10718.
  • Sussillo, D. and Abbott, L.F. (2009) Generating Coherent Patterns of Activity from Chaotic Neural Networks. Neuron 63:544-557.
  • George, M.S., Abbott, L.F. and Siegelbaum, S.A. (2009) Hyperpolarization-Activated HCN Cation Channels Exert Inhibit Subthreshold EPSPs Through Interactions with M-Type K+ Channels. Nature Neurosci. 12:577-584.
  • Vogels, T.P. and Abbott, L.F. (2009) Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks. Nature Neurosci. 12:483-491.
  • Abbott, L.F. (2008) Theoretical Neuroscience Rising. Neuron 60:489-495.
  • For a complete list of publications, please visit